quinta-feira, 11 de junho de 2020



RELATIVISMO QUÂNTICO DIMENSIONAL GRACELI.


O POSICIONAMENTO E DISTANCIAMENTO ENTRE PARTÍCULAS, ENERGIAS, E FENÔMENOS ALTERAM TODO SISTEMA FÍSICO DENTRO DAS PARTÍCULAS,, 


E QUE TEM AÇÃO DIRETA SOBRE NÚMERO QUÂNTICO, ESTADO QUÂNTICO, ESTRUTURA ELETRÔNICA, NÍVEIS DE ENERGIAS, E ONDAS ESTACIONÁRIAS NAS PARTÍCULAS DENTRO DOS ÁTOMOS,

COM ISTO SE TEM MAIS UM TIPO DE NÚMERO QUÂNTICO, QUE É O NÚMERO QU^NTICO DECA OU MAIS DIMENSÕES DE GRACELI.



SENDO QUE VARIA CONFORME O SDCTIE GRACELI. 


COMO TAMBÉM O TEMPO DE FLUXOS, E SPINS, MOMENTUM DOS FENÔMENOS E ENERGIAS,

OU SEJA SENDO VARIÁVEIS CONFORME O SDCTIE GRACELI E FORMANDO O UNIVERSO DIMENSIONAL QUÂNTICO DE GRACELI.

OU SEJA, SE INCLUI NO SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI.

OU SEJA, DIMENSÕES  DE ESTADOS QUÂNTICOS DE GRACELI.


E CONFORME O SDCTIE GRACELI.




O SDCTIE GRACELI É ATEMPORAL, OU SEJA PODE SE ENCAIXAR EM QUALQUER PARTE DA FÍSICA, QUÍMICA E OUTROS, E INCLUSIVE ALGUNS ALGUMAS TEORIAS E FUNÇÕES QUE AINDA NÃO FORAM FORMULADAS.


QUANDO SE ADICIONA ALGUM TIPO DE ENERGIA EM UM SISTEMA SE MODIFICA TODO SISTEMA DE TRANSFORMAÇÕES, INTERAÇÕES, DINÂMICAS, POTENCIAIS, ESTADOS QUÂNTICOS, ESTADOS DIMENSIONAIS E FENOMÊNICOS TRANSICIONAIS DE GRACELI, E OUTROS, E CONFORME O SDCTIE  GRACELI..

O ESTADO QUÂNTICO DE GRACELI  É RELATIVO POR SER VARIÁVEL AO SISTEMA SDCTIE GRACELI, E É INDETERMINADO PORQUE EM CADA ESTRUTURA, ENERGIA, DIMENSÃO DE GRACELI, CATEGORIA GRACELI SE TEM INTENSIDADES E VARIAÇÕES ESPECÍFICAS, MESMO ESTANDO TODO DENTRO DE UM SISTEMA SÓ, CORPO, OU PARTÍCULA. 


X



⇔  A FÍSICA DIMENSIONAL GRACELI PODE SER UM BRAÇO DA QUÂNTICA, OU MESMO SER UMA RELATIVIDADE FUNDAMENTADA NUMA TERCEIRA QUANTIZAÇÃO DO SDCTIE GRACELI.

ONDE SE VÊ O MUNDO FÍSICO NÃO APENAS POR QUANTUNS DE MATÉRIA, OU RELAÇÕES DE ONDAS E PARTÍCULAS, MAS NUM MUNDO TRANSCENDENTE E DE INTERAÇÕES E TRANSFORMAÇÕES CONFORME O SDCTIE GRACELI.

OU SEJA, O UNIVERSO DECADIMENSIONAL TRANSCENDENTE DE GRACELI, E NÃO APENAS DE QUANTUNS DE ENERGIAS, OU MESMO DE RELAÇÕES DE ONDAS PARTÍCULAS, OU DE INCERTEZAS.


EM QUE SE FUNDAMENTA EM :




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Diamagnetismo é o termo utilizado para designar o comportamento de materiais que são repelidos na presença de campos magnéticos, ao contrário dos materiais paramagnéticos e ferromagnéticos que são atraídos por campos magnéticos.
Uma levitação diamagnética.
O diamagnetismo é um efeito quântico que existe em todos os materiais, mas é tão fraco que normalmente não pode ser observado quando o material possui uma das outras duas propriedades: ferromagnetismo ou paramagnetismo[1]. Ou seja, o diamagnetismo corresponde ao tipo mais fraco de resposta magnética de um sistema[2].
Nos materiais diamagnéticos, os dipolos elementares não são permanentes, sendo que esses materiais não são afetados com a mudança de temperatura e o valor da sua susceptibilidade magnética é tipicamente próximo de milionésimo (10−6) e sempre negativo, devido a Lei de Lenz que afirma que um circuito submetido a um campo magnético externo variável, cria um campo contrário opondo-se a variação deste campo externo[2]. Devido ao valor da susceptibilidade magnética ser negativo, o material sofre uma repulsão, entretanto o efeito é muito fraco, isto é, somente é percebido em campos magnéticos intensos, algumas ordens de grandeza maior do que o campo magnético terrestre.
Todo material diamagnético submetido a um campo magnético externo apresenta um momento dipolar magnético líquido orientado no sentido oposto ao do campo magnético externo. Se o campo magnético externo é não-uniforme, o material diamagnético é repelido da região onde o campo magnético é mais intenso para a região onde o campo magnético é menos intenso.[1]

História[editar | editar código-fonte]

Foi primeiramente observado por Sebald Justinus Brugmans em 1778, ao observar que o bismuto e o antimônio eram repelidos por campos magnéticos. O diamagnetismo foi nominado e estudado por Michael Faraday, em 1845 que, através de seus estudos, concluiu que o diamagnetismo era uma propriedade da matéria, e que todo material respondia de uma forma diamagnética ou de uma forma paramagnética a um campo magnético aplicado a ele.[3]

Materiais[editar | editar código-fonte]

Materiais diamagnéticos como a água, ou materiais que tenham a água como base, tem uma permeabilidade magnética relativa menor ou igual a 1, consequentemente sua susceptibilidade magnética é menor ou igual a zero, já que a susceptibilidade é definida por χv = μv − 1. Isso indica que materiais diamagnéticos são repelidos por campos magnéticos. Contudo, como o diamagnetismo é uma propriedade fraca, seus efeitos não podem ser observados no dia a dia. Por exemplo, a susceptibilidade magnética de diamagnéticos como a água é da ordem de χv = −9.05×10−6 . O material diamagnético mais forte é o bismuto, χv = −1.66×10−4 , mesmo que o grafite pirolítico possa ter susceptibilidade de χv = −4.00×10−4 em um dos planos. Mesmo assim, estes valores são de ordem de magnitude muito inferior ao magnetismo que possuem os materiais paramagnéticos e ferromagnéticos.
Todos os condutores mostram um diamagnetismo mais efetivo quando interagem com um campo magnético que varia no tempo. A força de Lorentz que age nos elétrons faz com que eles se movimentem formando correntes parasitas, que por sua vez produzem um campo magnético induzido no sentido oposto ao campo aplicado.

Supercondutividade[editar | editar código-fonte]

Transição da condutividade normal (esquerda) para a supercondutividade (direita). Durante a transição, o condutor repele o campo magnético e age como um diamagnético perfeito.
Supercondutores são materiais que perdem a resistência à corrente elétrica quando estão abaixo de uma determinada temperatura. O supercondutor é um diamagnético perfeito (χv = −1). pois ele repele todos os campos magnéticos (exceto em superfícies muito finas) devido ao Efeito Meissner. Esse efeito, que talvez seja a característica mais famosa dos supercondutores, é a causa da levitação magnética de um ímã, por exemplo, quando é colocado sobre um pedaço de supercondutor. A explicação para o fenômeno está na repulsão total dos campos magnéticos externos pelos supercondutores, o que faz com que o campo magnético interno seja nulo, desde que o campo externo aplicado não seja muito intenso.[4]
Principais materiais diamagnéticos[5] (O valor da susceptibilidade χv é adimensional)
Materialχv [x 10−5]
Supercondutor-105
Grafite Pirolítico-40,9
Bismuto-16,6
Mercúrio-2,9
Prata-2,6
Diamante-2,1
Chumbo-1,8
Grafite-1,6
Cobre-1,0
Água-0,91

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Teoria[editar | editar código-fonte]

Em um material, normalmente os elétrons se dispõe em órbitas, sem nenhuma resistência entre elas agindo como um loop de corrente. Deste modo, poderia se dizer que em geral os efeitos do diamagnetismo seriam comuns, visto que qualquer campo magnético aplicado gerariam corrente nesses loops em oposição à carga, de um modo similar aos supercondutores, que essencialmente são diamagnéticos perfeitos. Entretanto, como os elétrons são mantidos presos às órbitas pela carga dos prótons e ainda mais pelo Princípio de Exclusão de Pauli, muitos materiais exibem o diamagnetismo mas respondem muito pouco aos campos magnéticos aplicados.
O Teorema de Bohr-Van Leewen[6][7] prova que não pode haver paramagnetismo ou diamagnetismo em um sistema puramente clássico, Porém, a teoria clássica de Paul Langevin para o diamagnetismo nos dá a mesma previsão que a teoria quântica. A teoria clássica é dada abaixo:

Diamagnetismo de Langevin[editar | editar código-fonte]

A teoria do diamagnetismo de Langevin[8] se aplica a materiais que contém átomos O número de revoluções por unidade de tempo é com "cascas fechadas" (ver dielétrico). Um campo magnético com intensidade B, aplicado a um elétron com carga e e massa m, dá início à precessão de Larmor com uma frequência ω = eB / 2m. O número de revoluções por unidade de tempo é ω / 2π. Então a corrente elétrica para um átomo com Z elétrons é (em unidades do SI):
.
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O momento magnético de um loop de corrente é igual a corrente vezes a área do loop. Suponha que o campo é alinhado com o eixo z, a área média do loop pode ser dada por π(ρ²) , onde (ρ²) é a raíz quadrada da distância dos elétrons perpendiculares ao eixo z. O momento magnético é, portante:
.
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Se a distribuição da carga é esfericamente simétrica, podemos supor que a distribuição das coordenadas x, y, z são independentes e igualmente distribuídas. Então . Onde. é a raíz quadrada da distância dos elétrons até o núcleo, portanto . Se n é o número de átomos por unidade de volume, a susceptibilidade magnética do volume é, em unidades do SI:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Demonstrações[editar | editar código-fonte]

Curvando a superfície da água[editar | editar código-fonte]

Se um imã forte é coberto com uma camada fina de água em comparação ao diâmetro do imã, então o campo magnético do imã irá repelir a água, gerando uma pequena curvatura na superfície e que pode ser vista pelo seu reflexo.[9]

Levitação[editar | editar código-fonte]

Um sapo vivo flutua em um pequeno solenoide de 32mm de diâmetro, com um campo magnético de aproximadamente 16 Tesla.
Materiais diamagnéticos podem sofrer um efeito de levitação em equilíbrio estável quando submetidos a um campo magnético, sem consumir energia para isso. O Teorema de Earnshaw parece impossibilitar a possibilidade da levitação magnética estática, porém o teorema aplica-se apenas a objetos com susceptibilidade magnética positiva como os ferromagnéticos (que possuem um momento positivo permanente) e os paramagnéticos (que induzem um momento positivo), Estes materiais são atraídos pelo campo máximo, que não podem existir no espaço. Já os diamagnéticos (que induzem momento negativo) são atraídos pelo campo mínimo, que podem existir no espaço livre.[10]
Um pequeno pedaço fino de grafite pirolítico, um diamagnético forte, pode ser colocado flutuando de modo estável em um campo magnético,gerado por um imã permanente de Terra-rara. Este experimento pode ser feito com todos os componentes em temperatura ambiente, tornando assim um exemplo excelente de demonstração do diamagnetismo.
A universidade católica Radboud Universiteit Nijmegen conduziu um experimento onde foram postas em levitação água e outras substâncias, em particular um pequeno sapo vivo (ver figura).[11]
Em setembro de 2009 a NASA, mais precisamente o Laboratório de Propulsão a Jato, em Pasadena, Califórnia, anunciou que concluiu com sucesso um experimento levitando ratos usando supercondutores magnéticos[12]. Como ratos são biologicamente muito mais similares a seres humanos do que sapos, o feito foi de grande importância e deve gerar novos experimentos apesar dos efeitos da microgravidade em ossos e massa muscular.





Ferromagnetismo é o mecanismo básico pelo qual certos materiais (como ferro) formam ímãs permanentes, ou são atraídos por ímãs. Na física, vários tipos diferentes de magnetismo são distinguidos. Ferromagnetismo (incluindo ferrimagnetismo) é o tipo mais forte e é responsável por fenômenos comuns do magnetismo encontradas na vida cotidiana. Outras substâncias respondem fracamente a campos magnéticos com dois outros tipos de magnetismo o paramagnetismo, e o diamagnetismo, mas as forças são tão fracas que elas só podem ser detectadas por instrumentos sensíveis em um laboratório. Um exemplo corriqueiro de ferromagnetismo é um ímã de geladeira usado para guardar notas em uma porta do refrigerador.
Um material ferromagnético tem um momento magnético espontâneo – um momento magnético mesmo em um campo magnético aplicado igual a zero. A existência de um momento espontâneo sugere que os spins dos elétrons e os seus momentos magnéticos estão arranjados de uma maneira regular. O ferromagnetismo é encontrado em ligas binárias e ternárias de ferroníquelcobalto com outros elementos[1], alguns compostos de metais de terras raras, e alguns minerais de ocorrência natural, tais como magnetita.

História e distinção do ferrimagnetismo[editar | editar código-fonte]

Historicamente, o termo ferromagnético foi usado para qualquer material que exibisse magnetização espontânea, i.e, um momento magnético na ausência de um campo magnético externo. Esta definição geral é ainda de uso comum. Mais recentemente, no entanto, diferentes classes de magnetização espontânea foram identificadas. Em particular, um material é ferromagnético somente se todos os seus íons magnéticos adicionarem uma contribuição positiva para a magnetização líquida. Se alguns dos íons magnéticos subtrair a magnetização líquida (se forem parcialmente antialinhados), então o material é ferrimagnético. Se os momentos dos íons alinhados e antialinhados forem iguais, de modo a ter magnetização líquida zero, apesar do ordenamento magnético, então o material é um antiferromagneto. Estes efeitos de alinhamento só ocorrem em temperaturas abaixo de uma determinada temperatura crítica, denominada temperatura Curie (para ferromagnetos e ferrimagnetos) ou a temperatura Néel (para antiferromagneto).

Ciclo de histerese[editar | editar código-fonte]

Quando um campo magnético externo é aplicado a um ferromagneto como o ferro, os dipolos atômicos irão alinhar-se com ele. Mesmo quando o campo é removido, parte do alinhamento vai ser mantido: o material tornou-se magnetizado. Uma vez magnetizado, o imã vai ficar magnetizado por tempo indeterminado. Para desmagnetizar exige-se aplicação de calor ou de um campo magnético na direção oposta. Este é o efeito que fornece o elemento de memória em uma unidade de disco rígido.
A relação entre a indução magnética H e a magnetização M não é linear em tais materiais. Se um ímã é desmagnetizado (H = M = 0) e a relação entre H e M é plotada para aumento dos níveis de intensidade de campo, M segue a curva de magnetização inicial. Esta curva aumenta rapidamente no início e depois se aproxima de uma assíntota chamada saturação magnética. Se o campo magnético é agora reduzido monotonicamente, M segue uma curva diferente. Em uma intensidade de campo igual a zero, a magnetização é compensada a partir da origem de um montante chamado de remanência. Se a relação entre H e M for traçado para todas as forças de campo magnético aplicado o resultado é um ciclo de histerese chamado de loop principal.
Um olhar mais atento em uma curva de magnetização geralmente revela uma série de pequenos saltos aleatórios na magnetização chamados saltos Barkhausen. Este efeito é devido a defeitos cristalográficos tais como deslocamentos.

Origem física[editar | editar código-fonte]

O fenômeno da histerese em materiais ferromagnéticos é o resultado de dois efeitos: a rotação do vetor magnetização e as mudanças no tamanho ou número de domínios magnéticos. Em geral, a magnetização varia (em direção, mas não magnitude) através de um ímã.
Ímãs maiores são divididos em regiões chamadas de domínios. Em cada domínio, a magnetização não varia, mas entre os domínios temos paredes de domínio relativamente finas em que a direção da magnetização gira na direção de um domínio para outro. Se o campo magnético muda, as paredes se movem, mudando assim o tamanho relativo dos domínios.

Aplicações[editar | editar código-fonte]

Há uma grande variedade de aplicações da histerese em ferromagnetos. Muitos destes fazem uso de sua capacidade de reter memória, por exemplo, cartões de fita magnética, discos rígidos, e de crédito. Nestas aplicações, ímãs de disco rígido como o ferro são desejáveis para a memória não ser facilmente apagada.

Método de medição dos campos[editar | editar código-fonte]

O método descrito pelo ciclo de histerese mede o campo de indução magnética  em função do campo magnético . Se considermos um anel de material ferromagnético de seção A e raio R constante, envolvido por N espiras pelas quais passa uma corrente contínua I. Nesta situação, os campos são circulares dentro do anel e são desprezíveis fora dele. Deste modo se calcula o valor de  a partir da Lei de Ampère:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e, como o anel tem simetria circular, a integral resulta:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Levando em conta a permeabilidade magnética relativa do material , é possível calcular o campo de indução magnética:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Este sistema é usado na prática para medir os dois campos ao variar a intensidade da corrente:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Uma vez medidos  e  se pode encontrar o valor da magnetização :
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Por meio desse procedimento é possível obter experimentalmente a curva de magnetização, ou a variação do campo magnético em função do vetor de indução magnética e, portanto, o ciclo de histerese.

Temperatura de Curie[editar | editar código-fonte]

Marie Curie foi a primeira a descobrir que existe uma temperatura crítica para cada material ferromagnético acima da qual o material se comporta como paramagnético. Quando a temperatura aumenta, o movimento térmico compete com a tendência ferromagnética para os dipolos se alinharem. Quando a temperatura sobe além de certo ponto, chamado de temperatura Curie, há uma transição de fase de segunda ordem e o sistema não pode mais manter uma magnetização espontânea, embora ainda responda paramagneticalmente a um campo externo. Abaixo dessa temperatura, há uma quebra espontânea de simetria e forma-se domínios aleatórios (na ausência de um campo externo). A Susceptibilidade magnética segue a lei de Curie-Weiss:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



onde C é uma constante característica do material,  sua densidade e  a temperatura de Curie em kelvin.

Modelos teóricos[editar | editar código-fonte]

O ferromagnetismo representa um dos principais problemas em aberto da física do estado sólido. Existem dois modelos teóricos que o descrevam: o modelo de Ising e o modelo de Weiss, o qual será tratado a seguir, ambos sendo baseados na hamiltoniana de Werner Karl Heisenberg, mas que utilizam grandes aproximações.

Hamiltoniana de Heisenberg[editar | editar código-fonte]

hamiltoniana para um par de elétrons pertencentes a átomos vizinhos é:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  e  são as hamiltonianas apenas dos elétrons, e  é a interação entre os dois.
Pelo princípio de exclusão de Pauli, a função de onda total deve ser antissimétrica. Assim, tem-se duas possibilidades:
ou
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Onde os subscritos “A” ou “S” indicam uma função antissimétrica/simétrica.
As funções de onda de spin para um par de elétrons são:
As funções de onda “espaciais” são:
Efetuando um cálculo perturbativo sobre tais funções de onda obtêm-se:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde J é conhecida como integral de troca, que está relacionada com a Interação de Troca, interação responsável pela tendência dos momentos magnéticos do material a permanecerem paralelos entre si. A hamiltoniana separa, então, os estados com spins diferentes, e por este motivo, Heisenberg encontrou um operador que distinguisse os estados com spin diferente e que então pudesse descrever a interação precedente. Tal operador é:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Logo, a Hamiltoniana de Heisenberg é:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Modelo de Weiss[editar | editar código-fonte]

O modelo de Weiss propõe a generalização da hamiltoniana de Heisenberg para um sistema com mais elétrons, utilizando uma aproximação de campo médio: um elétron sofre uma interação devida à média do campo gerado pelos outros elétrons.
A Hamiltoniana do sistema torna-se então:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



onde  são, respectivamente o fator giromagnético e o magnéton de Bohr.
Substituindo o momento magnético:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


E o vetor magnetização:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Tem-se:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Logo:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Percebe-se uma analogia com o paramagnetismo de Langevin, no qual se faz o mesmo tipo de estudo, substituindo-se o campo magnético por um campo magnético eficaz, dado por:
.
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Existe, assim, uma temperatura crítica de Curie:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Abaixo da qual se manifestam os efeitos do ferromagnetismo. As quantidades “s” e “k” são os autovalores do spin e a constante de Boltzmann repectivamente, enquanto  é dado por:
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS











paramagnetismo consiste na tendência que os dipolos magnéticos atômicos têm de se alinharem paralelamente com um campo magnético externo. Este efeito ocorre devido ao spin mecânico-quântico, assim como o momento angular orbital dos elétrons. Caso estes dipolos magnéticos estejam fortemente unidos então o fenômeno poderá ser o ferromagnetismo ou o ferrimagnetismo.
Este alinhamento dos dipolos magnéticos atômicos tende a se fortalecer e é descrito por uma permeabilidade magnética relativa maior do que a sua unidade (ou, equivalentemente, uma susceptibilidade magnética positiva e pequena).
O paramagnetismo requer que os átomos possuam, individualmente, dipolos magnéticos permanentes, mesmo sem um campo aplicado, o que geralmente implica um átomo desemparelhado com os orbitais atômicos ou moleculares.
No paramagnetismo puro, estes dipolos atômicos não interagem uns com os outros e são orientados aleatoriamente na ausência de um campo externo, tendo como resultado um momento líquido zero. No caso de existir uma interação, então podem espontaneamente se alinhar ou antialinhar-se, tendo como resultado o ferromagnetismo ou o antiferromagnetismo, respectivamente. O comportamento paramagnético pode também ser observado nos materiais ferromagnéticos que estão acima da temperatura de Curie, e nos antiferromagnéticos acima da temperatura de Néel.
Em átomos sem dipolo magnético, um momento magnético pode ser induzido em uma direção anti-pararela a um campo aplicado, este efeito é chamado de diamagnetismo. Os materiais paramagnéticos podem também exibir o diamagnetismo, mas tipicamente com valores fracos.
Os materiais paramagnéticos em campos magnéticos sofrem o mesmo tipo de atração e repulsão que os ímãs normais, mas quando o campo é removido o movimento Browniano rompe o alinhamento magnético. No geral os efeitos paramagnéticos são pequenos (susceptibilidade magnética na ordem entre 10-3 e 10-5).

Lei de Curie no SDCTIE GRACELI.

Sob baixos campos magnéticos, os materiais paramagnéticos exibem a magnetização na mesma direção do campo externo, e de acordo com a lei de Curie:
onde:
MR é a magnetização resultante.
B é a densidade do fluxo magnético do campo aplicado, medido em tesla.
T é a temperatura absoluta, medida em kelvin.
C é uma constante específica de cada material (sua Constante de Curie).
Esta lei indica que os materiais paramagnéticos tendem a se tornar cada vez mais magnéticos enquanto o campo magnético aumentar, e cada vez menos magnéticos ao aumentar a temperatura. A lei de Curie é incompleta, pois não prediz a saturação que ocorre quando a maioria dos dipolos magnéticos estão alinhados, pois a magnetização será a máxima possível, e não crescerá mais, independentemente de aumentar o campo magnético ou diminuir-se a temperatura.

Materiais paramagnéticos[editar | editar código-fonte]

  • Sódio Na [11] (metal alcalino)
  • Magnésio Mg [12] (metal alcalino-terroso)
  • Cálcio Ca [20] (metal alcalino-terroso)
  • Estrôncio Sr [38] (metal alcalino-terroso)
  • Bário Ba [56] (metal alcalino-terroso)
  • Alumínio Al [13] (metal terroso) É o material paramagnético preferido para aplicações em catapultas eletromagnéticas lunares, utilizando rególito como minério.
  • Oxigênio O [8] (ametal calcogênio) Na forma líquida.
  • Tecnécio Tc [43] (metal de transição externa) (elemento artificial)
  • Platina Pt [78] (metal de transição externa) (metal nobre)
  • Urânio U [92] (metal de transição interna) (actinídeo)
  • Óxido Nítrico NO [15] (composto gasoso da categoria dos monóxidos)


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS